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Abstract
Fragmentation creates landscape-level spatial heterogeneity which in turn influences
population dynamics of the resident species. This often leads to declines in abundance
of the species due to increased susceptibility to edge effects between the remnant
habitat patches and the lower quality “matrix” surrounding these focal patches. In
this paper, we formalize a framework to facilitate the connection between small-scale
movement and patch-level predictions of persistence through a mechanistic model
based on reaction–diffusion equations. Themodel is capable of incorporating essential
information about edge-mediated effects such as patch preference, movement behav-
ior, and matrix-induced mortality. Wemathematically analyze the model’s predictions
of persistence with a general logistic-type growth term and explore their sensitivity to
demographic attributes in both the patch and matrix, as well as patch size and geom-
etry. Also, we provide bounds on demographic attributes and patch size in order for
the model to predict persistence of a species in a given patch based on assumptions
on the patch/matrix interface. Finally, we illustrate the utility of this framework with
a well-studied planthopper species (Prokelisia crocea) living in a highly fragmented
landscape. Using experimentally derived data from various sources to parameterize
the model, we show that, qualitatively, the model results are in accord with experi-
mental predictions regarding minimum patch size of P. crocea. Through application
of a sensitivity analysis to the model, we also suggest a ranking of the most important
model parameters based on which parameter will cause the largest output variance.
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1 Introduction

1.1 Background andMotivation

Human activities over the past centuries have greatly exacerbated the fragmentation
of habitats [e.g., Heilman et al. (2002), Ewers et al. (2013), Uchida and Ushimaru
(2014)]. This fragmentation creates landscape-level spatial heterogeneity which in
turn influences the population dynamics of the resident species. Of particular concern,
it often leads to declines in abundance of the species due to increased susceptibility
to edge effects between the remnant habitat patches and the lower quality human-
modified “matrix” surrounding these focal patches (Ries et al. 2004; Fagan et al.
1999; Cantrell et al. 1998). In a comprehensive synthesis of empirical and theoretical
evidence of edge effects, Fagan et al. coined the term “edge-mediated effects” to
denote the mechanisms through which edges alter ecological processes (Fagan et al.
1999). Two edge-mediated effects that are of fundamental importance in the study of
habitat fragmentation on a single species at the patch level are: (1) the alteration of
how individuals move and (2) the alteration of mortality in response to edges.

Although studies of movement behavior in response to different habitat edge con-
ditions are relatively scarce, these studies clearly demonstrate that the composition
of the matrix can influence emigration rates, patterns of movement and within-patch
distributions of a species [e.g., Tscharntke et al. (2002), Schooley and Wiens (2004),
Haynes and Cronin (2006)]. Even in the same fragmented habitat, movement behavior
has been shown to be very species specific (Reeve and Cronin 2010). With regard to
alteration of mortality at patch edges, Cantrell et al. (1998) argued that matrix types
with increased mortality risk may threaten species with extinction as habitat patches
are “drained” of their occupants. The empirical examples cited in Cantrell and Cosner
(1999), that illustrate the detrimental patch-level effects of increased matrix hostil-
ity, were linked to human activities that altered matrix composition (e.g., housing
development and mortality from domesticated pets).

Connecting the wealth of empirical information available about individual move-
ment and mortality in response to matrix composition to predictions about patch-level
persistence is indeed a formidable task for which there is no coherent framework avail-
able (Maciel and Lutscher 2013). The reaction diffusion framework and its underlying
randomwalk models have been widely used by ecologists (Turchin 1998; Cantrell and
Cosner 2003; Holmes et al. 1994), and their great strength is that the model’s dynam-
ics can be analyzed mathematically, providing important patch-level predictions of
population persistence. The reaction diffusion framework is also ideally suited to
handle fragmentation and edge-mediated effects as the partial differential equation(s)
involved require explicit definition of edge behavior via boundary conditions (Cantrell
and Cosner 2003; Fagan et al. 1999).

In the now classical paper of Ludwig et al. (1979), the authors addressed a long-
standing problem in ecology and conservation biology—the minimum patch size for
population persistence. Here, they assumed a one-dimensional patch is surrounded
by a “sea” of hostile territory (matrix), the patch edge is invisible to organisms, and
the matrix did not necessarily inflict immediate mortality. Cantrell and Cosner (1998)
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also modeled edge-mediated movement behavior in a one-dimensional patch model
butwithoutmatrix effects by employing skewBrownianmotion.However, skewBrow-
nian motion has the undesirable property that habitat edges can serve as sources or
sinks for the population (Maciel and Lutscher 2013). More recently, Ovaskainen and
Cornell (2003) modified the random walk formulation to include movement behavior
based on habitat preference at patch edges. The random walk formulation gave rise to
interface conditions between spatial patches of varying quality. Maciel and Lutscher
(2013) later generalized the work of Ovaskainen and Cornell (2003) to integrate move-
ment behavior and patch preference into the classical reaction diffusion framework.
They consider persistence and spread of a species in a one-dimensional infinite periodic
landscape consisting of alternating “favorable” and “unfavorable” patches.Maciel and
Lutscher (2013) concluded that predictions of persistence varied widely among three
different patch–matrix interface scenarios when the matrix diffusion rate was allowed
to vary, whereas predictions were consistent across all three interfaces with respect to
changing matrix death rate and habitat preference.

In the present article, we formalize a framework built upon the randomwalkmodels
of these previous authors to simultaneously explore the effects of changes in move-
ment behavior at an edge, patch preference, and matrix hostility on predictions of
persistence for a one-, two-, or even three-dimensional patch with sufficiently smooth
boundary.We thenmathematically analyze these predictions of persistencewith a gen-
eral logistic-type growth term and explore their sensitivity to demographic attributes
in the matrix (diffusion rate and death rate), patch preference, demographic attributes
in the patch (intrinsic growth rate and diffusion rate), and patch size. The methods
employed give far more global results for predictions of persistence than the meth-
ods used in Maciel and Lutscher (2013). In particular, we confirm the predictions of
persistence given in Maciel and Lutscher (2013) and extend them to a general patch
in 1, 2, and 3 dimensions and any reasonable shape (with sufficiently smooth bound-
ary) and for a class of reaction terms that are characteristically logistic in nature, thus
making their predictions more robust. As a test and example of the application of the
model framework, we use it to predict the minimum patch size for the planthopper, P.
crocea living in patches surrounded by two matrix types known to greatly affect their
movement and edge behavior (Haynes and Cronin 2006; Reeve et al. 2008). Empirical
estimates for all parameters in the model are available for this species as well as some
information on the relationship between patch size and population persistence.

1.2 Modeling Framework

The reaction diffusion framework is based on individual movement assumptions
described by a random walk. In this case, it is assumed that both movement and
reproduction occur locally and on the same time scale (see Okubo (1980), Cantrell
and Cosner (2003), Holmes et al. (1994), for example). In order to separate the com-
bined effects of patch size and patch geometry on population persistence, we consider
a patch Ω0 to be a bounded, connected, open subset of Rn when n = 1, 2, or 3 with
|Ω0| = 1, where
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|Ω0| =

⎧
⎪⎨

⎪⎩

length of Ω0; n = 1

area of Ω0; n = 2

volume of Ω0; n = 3.

We assume here that the boundary ofΩ0 (denoted by ∂Ω0) is smooth. Now, we define
the focal patch as Ω = {�x | x ∈ Ω0} yielding:

|Ω| =

⎧
⎪⎨

⎪⎩

�; n = 1

�2; n = 2

�3; n = 3,

where � is a positive parameter representing the patch size [(see Cantrell and Cosner
(2003)]. In the model, u(t, x) represents the density of a theoretical population inhab-
iting Ω . Here, the variable t represents time and x represents spatial location within
Ω . The model is then:

ut = DΔu + ru f (u); t > 0, x ∈ Ω

u(0, x) = u0(x); x ∈ Ω

D
∂u

∂η
+

√
S0D0

κ
u = 0; t > 0, x ∈ ∂Ω (1)

where the parameter D is the diffusion rate inside the patch, D0 is the diffusion rate
in the matrix surrounding Ω , r is the patch intrinsic growth rate, S0 is the death rate in
the matrix, and κ is a parameter encapsulating assumptions regarding the patch/matrix
interface such as patch preference and movement behavior. Also, ∂u

∂η
represents the

outward normal derivative of u, r f (u) is the per-capita growth rate of the population
inside Ω , and u0 is the initial distribution of population density in the patch. The
parameters D, D0, S0, r , and κ are always positive. Note that the derivation of the
boundary condition in (1) is discussed in Sect. 2.1. We will be concerned with growth
terms that are characteristically logistic and as such satisfy:

(F1) There exists a K > 0 such that f (u) > 0 for u ∈ [0, K ), f (K ) = 0, and
f (u) < 0 for u > K ;

(F2) f ′(u) < 0 for u ≥ 0.

Here, the parameter K represents the carrying capacity inside the patch. For example,
the typical logistic per-capita growth rate of f (u) = (1 − u

K ) satisfies (F1) and (F2)
with a carrying capacity of K . For convenience, we choose f (0) = 1, since otherwise
we could just scale r and K to make f (0) = 1. We note that the theta-logistic per-
capita growth rate (see Sibly et al. (2005), for example) satisfies (F1)–(F2) and thus
will be covered in our analysis.
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2 Mathematical Modeling and Interpretation

2.1 Derivation of the Boundary Condition in (1)

Here, we discuss the derivation of the boundary condition found in (1) via a combina-
tion of the approaches of Maciel and Lutscher (2013) and Cantrell et al. (1998) under
the patch/matrix interface conditions given in these respective papers. Additionally, we
explore the interface scenarios suggested in Maciel and Lutscher (2013) and Cantrell
and Cosner (2007) and introduce a standard scaling argument to reduce the problem
to a more tractable single reaction diffusion model.

The boundary condition in (1) allowsmodeling of the effects of movement behavior
changes in response to patch/matrix interface and hostility of the matrix surrounding
the patch. To see this, combine the approach of modeling the effects of an unsuitable
matrix in Ludwig et al. (1979) with the interface conditions given in Maciel and
Lutscher (2013) for a one-dimensional patch Ω = (0, �) (� > 0 denotes the patch
size) surrounded by an infinite “sea” of hostile territory. Following the derivation in
Ludwig et al. (1979), exterior to Ω , the population density w is subject to the growth
law:

wt = D0wxx − S0w (2)

where D0 is a positive parameter representing the diffusion rate and S0 is a positive
parameter representing the death rate of the organism in the matrix. As in Maciel and
Lutscher (2013), making the assumption of continuity of flux is a natural condition
that will imply all organisms leaving the patch will enter the matrix and organisms
leaving the matrix will enter the patch. In other words, no organisms are introduced or
lost at the interface. However, a discontinuity arises in the density at the patch/matrix
interface which accounts for changes in movement behavior. To formalize this, letting
D be the diffusion rate inside Ω and following the random walk derivation given in
Maciel and Lutscher (2013) the interface conditions become:

D
∂u

∂η
= D0

∂w

∂η0
; x ∈ {0, �} (3)

u = κw; x ∈ {0, �} (4)

where κ is a positive, unitless parameter whose exact form depends on movement
behavior assumptions as we will explain later, η is the outward normal direction for
the patch, and η0 is the inward normal direction for the matrix. We now make the
assumption that the population density is at a stationary state in the matrix which from

(2) must be of the formw(x) = C1e

√
S0
D0

x
for x ≤ 0 and similarly for x ≥ �. Applying

(3) and (4) will immediately yield the boundary condition in (1).
For patches in higher dimensions with arbitrary boundary shapes, easily extend-

ing such a derivation is not possible. With this one-dimensional boundary condition
derivation in mind, we make the assumption that the population density is at a station-
ary state in the matrix whose distribution is approximated by exponential decay at a
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rate of
√

S0
D0

away from the patch. The boundary condition in (1) is then a reasonable
approximation of the true boundary behavior of the organism, where the parameter S0
can be interpreted as a death rate in the matrix, D0 as the diffusion rate in the matrix,
and κ as a measure of the discontinuous “jump” in density at the patch/matrix inter-
face. In Sect. 6.1, we provide a comparison of the accuracy of the model to predict
minimum patch size for a two-dimensional disk, square, and proper rectangle (see
also “Appendix C” where we provide a derivation of a mechanistically correct (at
least in terms of steady states and their stability) model for the special case of a disk-
shaped patch in two dimensions, namely (36)). Based upon our numerical exploration,
we conjecture that this assumption should provide a reasonable approximation to the
correct mechanistic formulation for patches that are simply connected and convex.

2.2 Patch–Matrix Interface Scenarios and Scaling

We now describe the interface scenarios suggested in Maciel and Lutscher (2013)
and Cantrell and Cosner (2007). Recall that in the random walk model, organisms
are assumed to move the step size Δx with probability p every Δt units of time. The
diffusion rate is then obtained by taking parabolic limits in such a way that

D = lim
Δx, Δt→0+

pΔx2

Δt
(5)

is finite and positive (Okubo 1980; Turchin 1998; Cantrell and Cosner 2003). We
now list four possible scenarios in Table 1 along with their κ-value, name, biological
interpretation, and selected references for each scenario. Inwhat follows,α will denote
the probability that an organism remains in the patch upon reaching the patch/matrix
interface. Derivations of each scenario can be found in the references listed in the
table. We note that a fourth type of discontinuous density (DD) is possible in that
both the step sizes and movement probabilities differ between the patch and matrix.
However, its derivation yields a κ-value that is simply proportional to the one in a
Type I DD. Qualitatively, we do not expect a difference in model output in this fourth
case versus Type I DD. Therefore, this case is omitted from our analysis. We also note
that the assumptions made in continuous density (CD) and Type III DD imply that
the patch diffusion rate (D) and matrix diffusion rate (D0) must be same. However,
previous authors have considered similar models with a CD or Type III DD interface
assumption but allowed D �= D0 [see Maciel and Lutscher (2013)]. In fact, Maciel
and Lutscher (2013) showed that under a CD interface assumption, a model prediction
of diffusion-independent persistence is possible when D �= D0. In the analysis that
follows, we will always consider the case that D = D0 in both the CD and Type III
DD cases.

We now introduce a standard scaling,

x̃ = x

�
& t̃ = r t . (6)
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Table 1 Listing of interface scenarios with descriptions and selected references

Scenario name Scenario description κ References

Continuous
density

Organisms move between the patch and
matrix with equal probability. Step sizes
and movement probabilities are equal in
the patch and matrix

1 Ludwig et al. (1979)

Type I
discontinuous
density (DD)

Organisms modify their movement behavior
at the patch/matrix interface and would
have a probability α of remaining in Ω

which may be different from 50%. Step
sizes differ between the patch and matrix,
whereas movement probabilities are equal

α
1−α

√
D0
D Ovaskainen and

Cornell (2003),
Maciel and Lutscher
(2013)

Type II
discontinuous
density (DD)

Organisms modify their movement behavior
at the patch/matrix interface and would
have a probability α of remaining in Ω

which may be different from 50%. Step
sizes are equal between the patch and
matrix, but movement probabilities are
different

α
1−α

D0
D Ovaskainen and

Cornell (2003),
Maciel and Lutscher
(2013)

Type III
discontinuous
density (DD)

Organisms remain in Ω with probability α

which may be different from 50%.
Movement probabilities and step sizes are
same between the patch and matrix

α
1−α

Cantrell and Cosner
(1999, 2007)

It is easy to see that after applying this scaling and dropping the tilde, (1) becomes

ut = 1

λ
Δu + u f (u); t > 0, x ∈ Ω0

u(0, x) = u0(x); x ∈ Ω0

∂u

∂η
+ �

√
S0D0

κD
u = 0; t > 0, x ∈ ∂Ω0 (7)

where λ = r�2
D is unitless and |Ω0| = 1. With regard to habitat fragmentation, we are

particularly interested in the predictions of persistence for the population given by
(7) as the patch size varies for a fixed patch geometry. Additionally, it is of interest to
explore how the predictions of persistence change as the patch demographic attributes,
such as the intrinsic growth rate and diffusion rate, vary. In Table 2, we enumerate the
different possibilities for the boundary condition of (7) as the different scenarios and
patch attributes are changed for a fixed patch geometry. Although the patch geometry is
seemingly fixed in this analysis, its effects are still included in the model’s predictions.
In particular, we want to study how persistence depends on each of the parameters
r , D, or � for fixed values of the remaining parameters. To this end, we write the
multiparameter model (7) in such a way as to ensure that the original parameters are
split into two unitless composite parameters, namely λ and γ , in such a way that the
parameter in question (r , D, or �) occurs only in λ. This process gives several different
forms of the boundary condition in (7) as listed in Table 2. We note that since D = D0
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Table 2 Boundary condition possibilities for (7)

Parameter of interest Type I and Type III DD Type II DD

κ = α
1−α

√
D0
D κ = α

1−α
D0
D

r : intrinsic growth rate ∂u
∂η

+ γ u = 0; x ∈ ∂Ω0
∂u
∂η

+ γ u = 0; x ∈ ∂Ω0

γ = 1−α
α

�
√
S0√
D

γ = 1−α
α

�
√
S0√
D0

D: patch diffusion rate ∂u
∂η

+ √
λγ u = 0; x ∈ ∂Ω0

∂u
∂η

+ γ u = 0; x ∈ ∂Ω0

γ = 1−α
α

√
S0√
r

γ = 1−α
α

�
√
S0√
D0

�: patch size ∂u
∂η

+ √
λγ u = 0; x ∈ ∂Ω0

∂u
∂η

+ √
λγ u = 0; x ∈ ∂Ω0

γ = 1−α
α

√
S0√
r

γ = 1−α
α

√
S0D√
r D0

Note that the continuous density scenario is a special case of Type III DD with α = 1
2 , where DD denotes

discontinuous density as described in Table 1

in CD and Type III DD interface scenarios, the boundary conditions for these two
cases are almost identical to that of Type I DD. Thus, it suffices to only analyze Type
I DD and Type II DD interface scenarios. In fact, the CD scenario can be considered
as a special case of Type III DD in which α = 1

2 and Type III DD considered a special
case of Type I DD in which D = D0.

Thus, all twelve parameters of interest and interface condition pairs can be treated
mathematically via study of the differential equation in (7) and one of the following
boundary conditions:

∂u
∂η

+ γ u = 0; t > 0, x ∈ ∂Ω0 (8)

∂u
∂η

+ √
λγ u = 0; t > 0, x ∈ ∂Ω0 (9)

or written more conveniently as

∂u
∂η

+ λμγ u = 0; t > 0, x ∈ ∂Ω0 (10)

whereμ = 0 and 1
2 correspond to (8) and (9), respectively. Study of themultiparameter

problem:

ut = 1

λ
Δu + u f (u); t > 0, x ∈ Ω0

u(0, x) = u0(x); x ∈ Ω0

∂u

∂η
+ λμγ u = 0; t > 0, x ∈ ∂Ω0 (11)

will cover all the forms listed in Table 2, where the meaning of the unitless parameter
γ will depend on the parameter of interest and interface type. Note that this framework
can be extended tomodel density-dependent boundary behavior simply by considering
a density-dependent α = α(u) and ultimately γ = γ (u).
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In the case of the continuous density scenario, organisms do not detect the change
between the patch andmatrix. Thus, they freely cross the boundary of the patch having
a probability of remaining in the patch of 50% and without adjusting their movement
behavior in the matrix. In this scenario, the difference between patch and matrix may
be subtle to the organism and not cause a change in movement behavior (Haynes and
Cronin 2006; Reeve et al. 2008). Notwithstanding, an organism operating under the
assumptions of Type III DD would be able to detect the change between patch and
matrix. However, in this scenario, the organism is only able to adjust its probability of
remaining in the patch. Movement behavior (step length and movement probability)
would be the same in the matrix versus the patch.

An organism operating under the assumptions of Type I DD would detect the edge
of the patch and bias its movement at the edge choosing to stay in the patch with
a probability other than 50%. In addition, the organism would alter the length of
each step of its movements while maintaining the same movement probability. As an
example, an organism may detect a harsh matrix, lower its probability of moving into
the matrix, and then for those organisms actually leaving the patch, increase the length
taken at each step in order to improve its chances of re-entering the patch or finding a
new one.

Under the assumptions of Type II DD, an organism would again detect the edge
of the patch and bias its movement at the edge, deciding to stay in the patch with a
probability other than 50%. The organismwould keep its step length equal in the patch
and matrix but would alter the movement probability.

3 Mathematical Preliminaries

The dynamics of a reaction diffusion model such as (11) are almost completely deter-
mined by its steady states, i.e., solutions of

−Δu = λu f (u); x ∈ Ω0

∂u

∂η
+ λμγ u = 0; x ∈ ∂Ω0 (12)

(see Cantrell and Cosner (2003) for example). Thus, understanding the structure
and stability properties of positive solutions of (12) will completely characterize the
dynamics of (11) and allowdescriptions of the relationship between themodel’s param-
eters and predictions of persistence for the theoretical population.

Given a solution of (12), u, its local stability properties can be determined by exam-
ining the sign of the principal eigenvalue, σ1 = σ1(Ω0, λ, γ, μ, u), of the linearized
eigenvalue problem associated with (12):

−Δφ − λ
[
f (u) + u f ′(u)

]
φ = σφ; x ∈ Ω0

∂φ

∂η
+ λμγφ = 0; x ∈ ∂Ω0 (13)
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with corresponding eigenfunction, φ, which can be chosen such that φ > 0; x ∈ Ω0
and ||φ||∞ = 1.

As with other models of the same type as (11), the principle of “invasion implies
persistence” holds. In other words, if an organism is able to survive in Ω at low
densities (and thus invade Ω), then the population will be able to persist in Ω . For the
model (11), persistence can be determined by studying the stability of the trivial steady
state, u ≡ 0, via consideration of the sign of σ1(Ω0, λ, γ, μ, 0). Although this type of
linearized stability can only determine the dynamics of the model locally near a steady
state, much more can be shown in the case of a reaction term satisfying the logistic-
type assumptions, (F1) and (F2). The following theorem allows an exact description
of the global dynamics of (11) based solely on the sign of σ1(Ω0, λ, γ, μ, 0).

Theorem 1 Suppose that f (u) satisfies (F1) and (F2). Let σ1(Ω0, λ, γ, μ, 0) be the
principal eigenvalue of (13) with corresponding eigenfunction, φ, chosen such that
φ > 0; x ∈ Ω0 and ||φ||∞ = 1. Then, we have the following:

(a) If σ1(Ω0, λ, γ, μ, 0) ≤ 0, then (11) has no positive equilibrium and u(t, x) will
tend to the stable trivial steady state, u ≡ 0, with exponential speed for any
nonnegative initial density profile.

(b) If σ1(Ω0, λ, γ, μ, 0) > 0, then the trivial steady state, u ≡ 0, is unstable, there
exists a unique globally asymptotically stable positive steady state, u, to (11), and
u(t, x) will tend to this positive steady state as t → ∞ for any positive initial
density profile. Moreover, εφ < u < 1 for x ∈ Ω0 and ε > 0 and small enough.

The proof of Theorem 1 can be found in Propositions 3.1–3.3 in Cantrell and Cosner
(2003).

In the following subsections, we will explicitly describe the relationship between
a given parameter of interest (r , D, or �) and the persistence of the population under
each of the four interface scenarios given in Table 1. To accomplish this, we compare
the linearized eigenvalue problem for the trivial steady state, (13), with the eigenvalue
problem:

−Δφ = Λφ; x ∈ Ω0

∂φ

∂η
+ βφ = 0; x ∈ ∂Ω0, (14)

where β ≥ 0 and we note that the Λ in (14) is the eigenvalue parameter. The fact that
(14) has a principal eigenvalue λ1 = λ1(Ω0, β) ≥ 0 and corresponding eigenfunction
φ which can be chosen such that φ > 0; x ∈ Ω0 and ||φ||∞ = 1 is classical (see
Cantrell and Cosner (2003), for example). Lemma 1 in “Appendix B” lists several
useful properties of λ1(Ω0, β). Now, comparing the eigenvalue problems (13) and
(14), uniqueness of the principal eigenvalue implies that:

λ1(Ω0, β) = σ1(Ω0, λ, γ, μ, 0) + λ (15)

β = λμγ. (16)
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4 Mathematical Analysis of (11)

In this section, we will analyze the model (11) in each of the cases dictated by the
parameter of interest.

4.1 Case 1:� = 0

Since μ = 0, (11) becomes:

ut = 1

λ
Δu + u f (u); t > 0, x ∈ Ω0

u(0, x) = u0(x); x ∈ Ω0

∂u

∂η
+ γ u = 0; t > 0, x ∈ ∂Ω0 (17)

where the definition of γ depends onwhich interface scenario is assumed fromTable 2.
The dynamics of (17) are already well known [see Cantrell and Cosner (2003)]. For
completeness and the ability to provide comparisons between the cases ofμ, we briefly
summarize the mathematical analysis of (17) in this subsection. It is easy to see that
when μ = 0, (15) and (16) yield:

σ1(Ω0, λ, γ, 0, 0) = λ1(Ω0, γ ) − λ. (18)

From Lemma 1 in “Appendix B,” we know that λ1(Ω0, 0) = 0, λ1(Ω0, γ ) is strictly
increasing in γ , and λ1(Ω0, γ ) → λ01(Ω0) (the principal eigenvalue of Laplace’s
equation with Dirichlet boundary conditions) as γ → ∞ giving rise to the following
theorem.

Theorem 2 Let λ∗
1(Ω0, γ ) = λ1(Ω0, γ ). Then, we have the following:

(a) σ1(Ω0, λ, γ, 0, 0) ≥ 0 if and only if γ > 0 and λ ≤ λ∗
1(Ω0, γ )

(b) σ1(Ω0, λ, γ, 0, 0) < 0 if and only if either γ = 0 and λ > 0 or γ > 0 and
λ > λ∗

1(Ω0, γ )

Thus, for any γ > 0 there will be a unique minimum λ-value, λ∗
1(Ω0, γ ), for which

the model’s only steady state will be the globally asymptotically stable trivial state
for λ ≤ λ∗

1(Ω0, γ ) and for λ > λ∗
1(Ω0, γ ) the model will have a unique globally

asymptotically stable positive steady state accompanied by the unstable trivial state.

4.2 Case 2:� = 1
2

In this case, (11) becomes:

ut = 1

λ
Δu + u f (u); t > 0, x ∈ Ω0

u(0, x) = u0(x); x ∈ Ω0

∂u

∂η
+ √

λγ u = 0; t > 0, x ∈ ∂Ω0 (19)
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where the definition of γ again depends on which interface scenario is chosen from
Table 2. In this case, (15) and (16) become:

σ1(Ω0, λ, γ, 0.5, 0) = λ1(Ω0, β) − λ (20)

β = √
λγ. (21)

Solving for λ = β2

γ 2 in (21) and then substituting λ into (20) gives

σ1(Ω0, λ, γ, 0.5, 0) = λ1(Ω0, β) − 1
γ 2 β

2. (22)

Theorem 3 connects the sign of σ1(Ω0, λ, γ, 0.5, 0) to ranges of parameter space for
λ and γ . Note that Fig. 1 illustrates Theorem 3.

Theorem 3 Let γ ≥ 0. Then, we have the following:

(a) there exists a λ∗
2(Ω0, γ ) > 0 such that

(1) if λ ≤ λ∗
2(Ω0, γ ), then σ1(Ω0, λ, γ, 0.5, 0) ≥ 0

(2) if λ > λ∗
2(Ω0, γ ), then σ1(Ω0, λ, γ, 0.5, 0) < 0.

(b) λ∗
2(Ω0, 0) = 0,

(
λ∗
2

)

γ
> 0 for γ > 0, and λ∗

2(Ω0, γ ) → λ01(Ω0) as γ → ∞.

Proof of Theorem 3 Define g(β) := 1
γ 2 β

2 and let γ > 0. From Lemma 1, we again
have that λ1(Ω0, 0) = 0, λ1(Ω0, β) is a strictly increasing and concave function of β

for β > 0, and λ1(Ω0, β) → λ01(Ω0) as β → ∞. Also, from the proof of Lemma 1
given in “Appendix” and the fact that we can choose φ > 0; x ∈ Ω0, we have that
λ′
1(Ω0, 0) > 0. To prove (a), note that g(0) = 0, g′(0) = 0 but λ1(Ω0, 0) = 0,

and λ′
1(Ω0, 0) > 0. Thus, λ1(Ω0, β) − 1

γ 2 β
2 > 0 for β > 0 and small enough.

But, since λ1(Ω0, β) is concave, strictly increasing, and bounded in β there exits a
unique β∗(Ω0, γ ) > 0 such that σ1(Ω0, λ, γ, 0.5, 0) = λ1(Ω0, β) − 1

γ 2 β
2 ≥ 0 for

β ∈ [
0, β∗(Ω0, γ )

]
and σ1(Ω0, λ, γ, 0.5, 0) = λ1(Ω0, β) − 1

γ 2 β
2 < 0 for β >

β∗(Ω0, γ ) (see Fig. 1). Since λ = β2

γ 2 and λ1(Ω0, 0) = 0, the result immediately

follows λ∗
2(Ω0, γ ) = [β∗(Ω0,γ )]2

γ 2 . Part (b) is clear from Lemma 1 and the previous
argument. �

Hence, for all γ > 0 then there will be a unique minimum λ-value, λ∗
2(Ω0, γ ), for

which the model’s only steady state will be the globally asymptotically stable trivial
state for λ ≤ λ∗

2(Ω0, γ ) and for λ > λ∗
2(Ω0, γ ) the model will have a unique globally

asymptotically stable positive steady state accompanied by the unstable trivial state.

5 Results

In this section, we discuss persistence of the organism with respect to each of the three
cases of parameters of interest.
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Fig. 1 Illustration of Theorem 3 (Color figure online)

5.1 Minimum Intrinsic Growth Rate for Persistence

Interpreting λ as being proportional to the intrinsic growth rate r means that study
of (11) is equivalent to study of (17), regardless of the interface scenario assumption.
From Theorem 2, given a γ > 0 will imply the existence of a minimum λ-value
required for the population to persist, namely λ∗

1(Ω0, γ ). Note that in the case γ = 0,
there is no such minimum λ-value since λ∗

i (Ω0, 0) = 0, i = 1, 2. From Table 2,
γ = 0 if and only if either 1) S0 = 0 meaning that matrix is not hostile or 2) α = 1
(only in Type I–III DD) meaning that individuals that reach the patch boundary will
never leave but always turn back into the patch. Both of these conditions will cause the
boundary condition in (11) to become a repelling no-flux boundary condition. In this
case, there is no loss of individuals through the boundary and the population can persist
unconditionally. Thus, for what follows we will only consider the case when γ > 0.
Using the definition of λ, we can then arrive at a corresponding minimum intrinsic
growth rate required for a prediction of persistence for the theoretical population given
a fixed patch diffusion rate and patch size:

r∗(Ω0, γ ) = Dλ∗
1(Ω0,γ )

�2
. (23)

Using (23) and Theorem 2 yields the following result detailing the connection between
the patch intrinsic growth rate and predictions of persistence from the model.

Corollary 1 Let γ > 0 be defined as in Table 2 according to the interface scenario
assumed. Then, we have the following:

(a) if r > r∗(Ω0, γ ), then (11) has a unique positive equilibrium, u, that is a global
attractor for nonnegative nontrivial solutions of (11);
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Table 3 Behavior of r∗(Ω0, γ ) under each of the four interface scenarios

Type I and Type III DD Type II DD

Behavior of r∗ wrt α
(
r∗)

α
< 0; α ∈ [0, 1]

r∗ → Dλ01(Ω0)

�2
as α → 0+

r∗ → 0 as α → 1−
Behavior of r∗ wrt S0

(
r∗)

S0
> 0; S0 ≥ 0

r∗ → 0 as S0 → 0+

r∗ → Dλ01(Ω0)

�2
as S0 → ∞

Behavior of r∗ wrt D0
(
r∗)

D0
= 0; D0 > 0 no D0-

dependence

(
r∗)

D0
< 0; D0 > 0

r∗ → Dλ01(Ω0)

�2
as D0 → 0+

r∗ → 0 as D0 → ∞
Note that the subscripts α, S0, and D0 denote partial derivatives and the continuous density scenario is a
special case of Type III DD with α = 1

2

(b) if r ≤ r∗(Ω0, γ ), then u ≡ 0 is a global attractor for nonnegative nontrivial
solutions of (11).

Notice that this critical intrinsic growth rate r∗ depends upon the geometry and size
of Ω , the diffusion rate inside the patch D, and parameters implicit in the interface

scenario assumption. Also fromTheorem 2, it is easy to see that r∗(Ω0, γ ) → Dλ01(Ω0)

�2

as γ → ∞ giving rise to a maximal minimum intrinsic growth rate. Much more
information can be obtained by studying the behavior of r∗(Ω0, γ ) as the interface
parameters (α, S0, and D0) are allowed to vary for fixed patch size and patch diffusion
rate. Table 3 lists the behavior of r∗(Ω0, γ ) under each of the interface scenarios.

Table 3 allows exploration of the relationship between minimum intrinsic growth
rate and one-parameter-at-a-time (either S0, D0, or α). To explore how this critical
value varies as all relevant parameters (D, �, S0, D0, and α) are allowed to change
simultaneously, we employ a sensitivity analysis. Variance-based sensitivity analysis
use is on the rise (Ferretti et al. 2016) since it provides global results for first-order
interactions, higher-order interactions (e.g., the combined effect of two parameters
changing simultaneously), and total effect index (an estimate of the total effect of
a parameter including first and higher-order interactions) [see Saltelli et al. (2010),
Saltelli et al. (2004), Saltelli et al. (2008)]. This type of sensitivity analysis typically
makes use of Monte Carlo methods to estimate an ANOVA decomposition of the
variance of a model across the entire parameter space (Saltelli et al. 2010).

Given a model with k parameters, variance-based sensitivity analysis typically
results in k estimates of the first-order interaction and k estimates of total effect indices,
both corresponding to the k parameters. For a detailed discussion of the ANOVA
decomposition of variance of a model, see Saltelli et al. (2008). The model output in
this sensitivity analysis is one of the three critical thresholds, either minimum intrinsic
growth rate (r∗(Ω0, γ )),maximumdiffusion rate (D∗(Ω0, γ )), orminimumpatch size
(�∗(Ω0, γ )). As seen in (23) (and similarly in the following subsections for D∗(Ω0, γ )
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Table 4 Sensitivity analysis
results: minimum intrinsic
growth rate in a disk-shaped
patch

� D S0 D0 α

Type I and Type III DD

Main effect (%) 14.1 0.0 0.0 0.0 0.0

Interaction effect (%) 80.0 2.7 1.5 0.0 59.6

Total effect (%) 94.1 2.7 1.5 0.0 59.6

Type II DD

Main effect (%) 21.0 0.0 0.0 0.0 0.0

Interaction effect (%) 67.4 5.4 1.4 2.8 54.5

Total effect (%) 88.4 5.4 1.4 2.8 54.5

Continuous density

Main effect (%) 85.0 0.0 0.0 0.0 0.0

Interaction effect (%) 13.8 7.3 9.0 0.0 0.0

Total effect (%) 98.8 7.3 9.0 0.0 0.0

Entries represent variance in r∗(Ω0, γ )

and �∗(Ω0, γ )) these critical values depend upon the principle eigenvalue of Laplace’s
equation with Robin boundary conditions via λ∗

i (Ω0, γ ), i = 1, 2, and thus need to be
calculated numerically. To calculate these critical thresholds, we employed two func-
tions in Mathematica (Wolfram Research Inc., version 11.3), (1) NDEigensystem
to numerically estimate this principle eigenvalue for a given patch geometry and (2)
FindRoot to numerically determine the value of λ∗

i (Ω0, γ ), i = 1, 2 (see Theorems
2 and 3).

The following parameters were selected on which to perform a variance-based
sensitivity analysis depending on the model output: (1) minimum patch size: x1 =
r , x2 = D, x3 = S0, x4 = D0,& x5 = α, (2) minimum intrinsic growth rate: x1 =
�, x2 = D, x3 = S0, x4 = D0,& x5 = α, and maximum patch diffusion rate:
x1 = r , x2 = �, x3 = S0, x4 = D0,& x5 = α. Applying sensitivity analysis to
the model allows us to suggest a ranking of the most important model parameters
based on which parameter will cause the largest output variance. This ranking could
then be used to prioritize resources in an empirical study to ensure a greater degree
of accuracy (which could be obtained, for example, via larger numbers of replicates
for experiments designed to estimate model parameters). See “Appendix A” for a
detailed description of the sensitivity analysis methodology. This sensitivity analysis
preformed on the minimum intrinsic growth rate for the case of the patch being a disk
is represented in Table 4. Changing the patch geometry would more than likely change
these results, though in this work we have not explored other geometries.

In Types I–III DD, the most important parameter is the patch size, followed by the
probability of remaining in the patch upon reaching the patch/matrix interface and
the patch diffusion rate. The matrix diffusion rate and death rate are close to tied for
last. In the case of continuous density, the order is the same except for patch diffu-
sion and matrix diffusion rates switch. For Types I–III DD, the majority of the total
effect for patch size is due to higher-order interactions with the other parameters,
while in continuous density scenarios main effects explain the majority of the total
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effect. For this particular choice of parameter ranges, these results suggest that under
any of the scenarios, if the true value of the patch size were provided, then the vari-
ance of the predictions of persistence could be reduced by 88–99%, depending on the
scenario. In Types I & II DD, fixing the probability of leaving the patch upon reach-
ing the patch/matrix interface to its true value would reduce the variation by around
55%. These sensitivity results indicate that for this choice of parameter ranges more
resources should be committed to empirical estimation of patch size and probability
of remaining in the patch upon reaching the patch/matrix interface (for Type I–III
DD) than the remaining parameters in order to achieve a more accurate estimate for
r∗(Ω0, γ ).

5.2 Maximum Patch Diffusion Rate for Persistence

Interpreting λ as being proportional to the reciprocal of the patch diffusion rate means
that study of (11) is equivalent to study of (17) or (19), depending on the interface
scenario assumption. Independent of the interface scenario assumption and for any
γ > 0 the existence of a minimum λ-value required for the population to persist is
guaranteed, namely λ∗

i (Ω0, γ ), where i = 1 or 2 depending on the interface scenario.
Using the definition ofλ, we can then arrive at correspondingmaximumpatch diffusion
rates required for a prediction of persistence for the theoretical population given a fixed
patch intrinsic growth rate and patch size:

D∗(Ω0, γ ) =
⎧
⎨

⎩

r�2

λ∗
1(Ω0,γ )

; Type II DD
r�2

λ∗
2(Ω0,γ )

; CD, Type I DD, or Type III DD
(24)

Using (24) and Theorems 2 and 3 yields the following results detailing the connec-
tion between the patch diffusion rate and predictions of persistence from the model.

Corollary 2 Let γ > 0 be defined as in Table 2 according to the individual interface
scenario listed below. Then, we have the following:

(1) if D ≥ D∗(Ω0, γ ), then u ≡ 0 is a global attractor for nonnegative nontrivial
solutions of (11);

(2) if D < D∗(Ω0, γ ), then (11) has a unique positive equilibrium, u, that is a global
attractor for nonnegative nontrivial solutions of (11);

Notice that this critical patch diffusion rate D∗ depends upon the geometry and size
ofΩ , the patch intrinsic growth rate r , and parameters implicit in the interface scenario
assumption. As in the previous subsection, much more information can be obtained
by studying the behavior of D∗(Ω0, γ ) as the interface parameters (α, S0, and D0)

are allowed to vary for fixed patch size and patch intrinsic growth rate. Table 5 lists
the behavior of D∗(Ω0, γ ) under each of the interface scenarios.

Finally, a sensitivity analysis was preformed on the maximum patch diffusion rate
yielding Table 6. The sensitivity results again reveal a ranking of the most important
parameters for the case of the patch being a disk and this particular choice of param-
eter ranges. In Type I & Type III DD, the most important parameter is the probability
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Table 5 Behavior of D∗(Ω0, γ ) under each of the four interface scenarios

Type I and Type III DD Type II DD

Behavior of D∗ wrt α
(
D∗)

α
> 0; α ∈ [0, 1]

D∗ → r�2

λ01(Ω0)
as α → 0+

D∗ → ∞ as α → 1−
Behavior of D∗ wrt S0

(
D∗)

S0
< 0; S0 ≥ 0

D∗ → ∞ as S0 → 0+

D∗ → r�2

λ01(Ω0)
as S0 → ∞

Behavior of D∗ wrt D0
(
D∗)

D0
= 0; D0 > 0 no D0-

dependence

(
D∗)

D0
> 0; D0 > 0

D∗ → r�2

λ01(Ω0)
as D0 → 0+

D∗ → ∞ as D0 → ∞
Note that the subscripts α, S0, and D0 denote partial derivatives and the continuous density scenario is a
special case of Type III DD with α = 1

2

Table 6 Sensitivity analysis
results: maximum patch
diffusion rate in a disk-shaped
patch

� r S0 D0 α

Type I and Type III DD

Main effect (%) 0.1 0.1 1.0 0.0 5.1

Interaction effect (%) 73.4 62.3 60.8 0.0 93.2

Total effect (%) 73.6 62.4 61.8 0.0 98.3

Type II DD

Main effect (%) 27.7 13.0 1.4 0.1 5.8

Interaction effect (%) 16.0 26.9 18.0 5.8 28.3

Total effect (%) 43.6 40.0 19.4 5.9 34.1

Continuous density

Main effect (%) 0.3 0.0 17.7 0.0 0.0

Interaction effect (%) 17.6 20.5 44.3 0.0 0.0

Total effect (%) 17.9 20.5 62.0 0.0 0.0

Entries represent variance in D∗(Ω0, γ )

of remaining in the patch upon reaching the patch/matrix interface, followed by the
patch size, and almost a tie for last in patch intrinsic growth rate and matrix death
rate. Type II DD showed that the most important parameter was patch size, followed
by patch intrinsic growth rate, probability of remaining in the patch upon reaching
the patch/matrix interface, matrix death rate, and matrix diffusion rate. Finally, in the
continuous density scenario, the ranking was matrix death rate, patch intrinsic growth
rate, and patch size. In the Type II DD scenario, model output variance was mostly
dominated by the main effects, whereas in the other scenarios it was dominated by
higher-order interactions of the parameters. In each scenario, fixing the most impor-
tant parameter at its true value can reduce variation in the model’s predictions by
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anywhere from 44 to 98%. The stark differences in parameter importance suggested
by the sensitivity analysis further corroborates the importance of the interface sce-
nario assumption to the model’s predictions of persistence. These sensitivity results
indicate that for this choice of parameter ranges more resources should be committed
to empirical estimation of the parameter yielding the most model variance depending
on interface scenario, in order to achieve a more accurate estimate for D∗(Ω0, γ ).

5.3 Minimum Patch Size Required for Persistence

Interpreting λ as being proportional to the patch size � squaredmeans that study of (11)
is equivalent to study of (19), regardless of the interface scenario assumption. From
Theorem 3, γ > 0 will always imply the existence of a minimum λ-value required for
the population to persist, namely λ∗

2(Ω0, γ ). Using the definition of λ, we can then
arrive at a corresponding minimum patch size required for a prediction of persistence
for the theoretical population given a fixed patch diffusion rate and patch intrinsic
growth rate:

�∗(Ω0, γ ) =
√

D
r λ∗

2(Ω0, γ ). (25)

Using (25) and Theorem 3 yields the following result detailing the connection between
the patch size and predictions of persistence from the model.

Corollary 3 Let γ > 0 be defined as in Table 2 according to the interface scenario
assumed. Then, we have the following:

(a) if � > �∗(Ω0, γ ), then (19) has a unique positive equilibrium, u, that is a global
attractor for nonnegative nontrivial solutions of (19);

(b) if � ≤ �∗(Ω0, γ ), then u ≡ 0 is a global attractor for nonnegative nontrivial
solutions of (19).

Notice that this critical patch size �∗ depends upon the geometry ofΩ0, the diffusion
rate inside the patch D, patch intrinsic growth rate, and parameters implicit in the
interface scenario assumption.Also fromTheorem3, it is easy to see that �∗(Ω0, γ ) →√

D
r λ01(Ω0) as γ → ∞which gives rise to amaximalminimumpatch size.Muchmore

information can be obtained by studying the behavior of �∗(Ω0, γ ) as the interface
parameters (α, S0, and D0) are allowed to vary for fixed patch intrinsic growth rate
and diffusion rate. Table 7 lists the behavior of �∗(Ω0, γ ) under each of the interface
scenarios.

Finally, a sensitivity analysis was preformed on the minimum patch size yielding
Table 8. Sensitivity results again reveal a ranking of the most important parameters
for the case of the patch being a disk and this particular choice of parameter ranges.
In Type I–III DD and continuous density scenarios, the most important parameter is
the patch intrinsic growth rate, followed by patch diffusion rate and the probability of
remaining in the patch upon reaching the patch/matrix interface. The matrix diffusion
rate and death rate are close to tied for last. For all scenarios, the majority of the total
effect for patch intrinsic growth rate is due to main effects. In this case, there is very
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Table 7 Behavior of �∗(Ω0, γ ) under each of the four interface scenarios

Type I and Type III DD Type II DD

Behavior of �∗ wrt α
(
�∗)

α
< 0; α ∈ [0, 1]

�∗ →
√

D
r λ01(Ω0) as α → 0+

�∗ → 0 as α → 1−
Behavior of �∗ wrt S0

(
�∗)

S0
> 0; S0 ≥ 0

�∗ → 0 as S0 → 0+

�∗ →
√

D
r λ01(Ω0) as S0 → ∞

Behavior of �∗ wrt D0
(
�∗)

D0
= 0; D0 > 0 no D0-

dependence

(
�∗)

D0
< 0; D0 > 0

�∗ →
√

D
r λ01(Ω0) as D0 → 0+

�∗ → 0 as D0 → ∞
Note that the subscripts α, S0, and D0 denote partial derivatives and the continuous density scenario is a
special case of Type III DD with α = 1

2

Table 8 Sensitivity analysis
results: minimum patch size in a
disk-shaped patch

r D S0 D0 α

Type I and Type III DD

Main effect (%) 79.0 3.7 0.6 0.0 6.0

Interaction effect (%) 12.6 11.9 0.8 0.0 5.2

Total effect (%) 91.6 15.6 1.4 0.0 11.2

Type II DD

Main effect (%) 76.9 6.1 0.5 0.4 5.6

Interaction effect (%) 13.3 12.8 0.8 0.5 4.8

Total effect (%) 90.2 18.9 1.3 0.9 10.4

Continuous density

Main effect (%) 85.2 3.6 1.0 0.0 0.0

Interaction effect (%) 12.8 10.8 0.4 0.0 0.0

Total effect (%) 98.0 14.4 1.4 0.0 0.0

Entries represent variance in �∗(Ω0, γ )

little variance due to interaction between the parameters. For this particular choice
of parameter ranges, these results suggest that if the true value of the patch intrinsic
growth rate were provided, then the variance of the predictions of persistence could
be reduced by 90–98%, depending on the interface scenario assumptions, while fixing
the patch diffusion rate to its true value would reduce the variation by around 14–
19%. These sensitivity results indicate that for this choice of parameter ranges more
resources should be committed to empirical estimation of intrinsic growth rate than
the remaining parameters in order to achieve a more accurate estimate for �∗(Ω0, γ ).
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5.4 Biological Interpretation

In each of the three parameters of interest cases, this analysis gives a minimum for
patch intrinsic growth rate and patch size and a maximum for patch diffusion rate.
In other words, for fixed values of the parameters, the patch (1) intrinsic growth rate,
(2) diffusion rate, or (3) size must be large, small, or large enough, respectively, to
overcome the loss of organisms through contact with the patch/matrix interface and
hostility of the matrix or ensure that a sufficient proportion of the population avoids
mortality induced through contact with the patch/matrix interface and hostility of the
matrix. In the case of minimum patch size, this fact agrees with the well-known notion
of a minimum core area (in the case of n = 2) requirement (Ohman and Eriksson
1998; Cronin 2009). The λ∗

i (Ω0, γ )-values present in each of these bounds can be
viewed as quantifying the loss of the population due to the unsuitable matrix where
the i-value depends on the interface scenario assumed and γ encapsulates parameters
regarding the interface. In particular, from (23)–(25) and the fact that the λ∗

i (Ω0, γ )’s
are increasing functions of γ , increased matrix hostility yields higher γ -values which
in turn yieldsmore restrictive critical thresholds, e.g., larger minimum patch size. Note
that these results are qualitatively similar to those in Skellam (1951).

The fact that λ∗
i (Ω0, γ ) → λ01(Ω) as γ → ∞ for each i = 1 or 2, reveals a model

prediction of the existence of a maximum possible effect of population loss due to the
unsuitable matrix where this effect is quantified in λ01(Ω0). This phenomenon is well
known in the case of minimum patch size [see, e.g., Cantrell and Cosner (2003)]. We
also make note that this minimum patch size approaches infinity if either (1) the patch
diffusion rate is arbitrarily large, since a large diffusion rate ensures that a very high
proportion of the population will encounter loss at the patch/matrix interface, or (2)
the intrinsic growth rate is arbitrarily small, which for a fixed patch diffusion rate will
imply that the population is not able to recover the loss associated with interaction
with unsuitable matrix. The maximum patch diffusion rate approaches zero (meaning
no organism can colonize the patch) if either (1) the patch size is arbitrarily small,
since a small patch ensures that a very high proportion of the population will encounter
loss at the patch/matrix interface, or (2) the intrinsic growth rate is arbitrarily small.
Finally, note that the minimum intrinsic growth rate approaches infinity if either (1)
the patch diffusion rate is arbitrarily large or (2) the patch size is arbitrarily small. The
complex definition of the maximum patch diffusion rate given in (24) and Corollary
2 reveals an important but somewhat subtle difference in exploring the predictions of
persistence from the model (1) as the patch diffusion rate is varied for fixed values of
the remaining parameters and for different interface scenario assumptions. This fact
further increases the need to carefully identify the parameter of interest and interface
scenario assumptions in order to correctly determine the model’s predictions.

Tables 3, 5, and 7 give some insight into the behavior of the minimum intrinsic
growth rate, maximum patch diffusion rate, and minimum patch size, respectively, as
the interface parameters are varied. As expected in each of the parameters of interest,
the continuous density scenario showsnoα-dependence as the probability of remaining
in the patch upon reaching the patch/matrix interface is fixed at 50%. Themodel further
predicts that in Type I–IIIDD scenarios theminimumpatch size andminimum intrinsic
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growth rate are 0 when 100% of the population remain in the patch upon reaching the
patch/matrix interface. In this case, the population is protected from the effects of the
unsuitable matrix. Both minimum patch size and minimum intrinsic growth rates are
monotonic decreasing functions of α. As this probability approaches 0%, more of the
population is exposed to the effects of the unsuitable matrix and, in turn, the effect
of population loss at the patch/matrix interface reaches its maximum value. As for
maximumpatch diffusion rate, themodel predicts that in all scenarios this diffusion rate
is∞when 100% of the population remain in the patch upon reaching the patch/matrix
interface. The maximum patch diffusion rate is also a monotonic increasing function
of α in Type I–III DD. As this probability approaches 0%, more of the population is
exposed to the effects of the unsuitable matrix and, in turn, the effect of population
loss at the patch/matrix interface reaches its maximum value. For all three parameters
of interest under any of the interface scenarios, the population experiences no loss
when the matrix death rate is 0 and the population experiences the maximum loss at
the patch/matrix interface when the matrix death rate is arbitrarily large. Analysis of
the model also reveals that minimum intrinsic growth rate and minimum patch size
are monotonic increasing functions of the matrix death rate, while maximum patch
diffusion rate is a monotonic decreasing function of matrix death rate.

Since the behaviors of all three parameters of interest with respect to the matrix
diffusion rate are similar, we will only detail minimum patch size here. This behav-
ior is starkly different depending on the interface scenario assumption. Type I DD,
Type III DD, and CD scenarios all give a setting in which the minimum patch size
is independent of the matrix diffusion rate. In Type I DD, the model assumes that
organisms modify their behavior at the patch/matrix interface by showing different
movement step sizes but the samemovement probability between the patch andmatrix.
In this case, attempting to change the diffusion rate in the matrix would have no pre-
dicted benefit to the population’s persistence. However, in the Type II DD scenario,
it is assumed that organisms modify their movement behavior through altering their
movement probability,while keeping theirmovement step size equal between the patch
and matrix. These discrepancies between interface scenarios with respect to matrix
diffusion rate are exactly the ones originally seen in Maciel and Lutscher (2013) for a
one-dimensional patch. Our results extend their results to reasonable patches in one-,
two-, or three-dimensional space (with sufficiently smooth boundary) and tomore gen-
eral logistic-type growth making them much more robust. In a sense, our results show
that the mechanism behind these discrepancies is invariant with respect to domain
geometry.

6 An Empirical Example and Numerical Exploration of the Accuracy of
the Framework

In this section, we provide a partial numerical exploration of the framework’s accu-
racy via comparison of minimum patch size estimates for the two-dimensional patch
geometries: disk, square, and rectangle, and illustrate the utility of the framework via
an empirical example. Due to the computationally expensive nature of this numerical
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Table 9 Absolute error between �∗(Ω0, γ ) and �∗∗(Ω0, γ1, γ2) with entries in parentheses representing
error relative to the maximum minimum patch size

Mean error SD Minimum error Maximum error

Type I DD 0.21 (9.8%) 0.54 (14.1%) 2.82 × 10−6 (1.2 × 10−6%) 7.35 (84.9%)

Type II DD 0.21 (9.3%) 0.54 (11.6%) 2.82 × 10−6 (3.3 × 10−6%) 7.35 (60.6%)

Type III DD 0.24 (7.9%) 0.60 (9.6%) 2.82 × 10−6 (9.7 × 10−6%) 7.35 (50.4%)

Continuous density 0.28 (9.5%) 0.63 (8.1%) 2.5 × 10−5 (1.0 × 10−5%)) 5.25 (26.7%)

exploration of the model, a more complete numerical exploration of the accuracy over
parameter space is outside the scope of this current work.

6.1 Numerical Exploration of the Accuracy of the Framework

For the case of a disk in two dimensions, we provide a mechanistically correct deriva-
tion of minimum patch size, �∗∗(Ω0, γ1, γ2), in “Appendix C,” where γ1, γ2 are
defined as in Table 13. We compared �∗(Ω0, γ ) to �∗∗(Ω0, γ1, γ2) for 11, 973 param-
eter combinations, i.e., (r , D1, α, D0, S0), where r , D1, D0,& S0 ∈ [0.01, 10] and
α ∈ [0, 1]. Both absolute error and error relative to the maximumminimum patch size√

r
D1

λ01(Ω0) for all 11, 973 parameter combinations are summarized in Table 9.

Comparison of the model (11) and the mechanistically correct model for a two-
dimensional disk (43) shows that �∗(Ω0, γ ) ≈ �∗∗(Ω0, γ1, γ2) whenever γ2 � 1,
since H(s) ≈ 1 for s � 1 (Yang and Chu 2016).

In the case of a rectangle in two dimensions, we employed a finite difference
method (FDM) to numerically solve the time-dependent patch/matrix model (38) [see
“Appendix C”)] with Ω being a rectangle with unit area centered at the origin and
the region exterior to Ω , i.e., Ωe, being the subset of the rectangle centered at the
origin with an area of 10 not containing Ω . The boundary condition w(t, x) →
0; t > 0, |x | → ∞ was then replaced by w(t, x) = 0; t > 0, |x | = 10. Given
a particular set of parameters for the model, i.e., (r , D1, α, D0, S0), to numerically
determine the minimum patch size for the system, a bisection method was employed

on the interval of patch sizes,

[

0,
√

D1
r λ01(Ω)

]

, with the right endpoint being the

maximum minimum patch. The middle of the interval was then chosen as the patch

size, i.e., m = 1
2

√
D1
r λ01(Ω), and the initial density distribution was then taken as

w(0, x) = 0.0001; x ∈ Ω . Themodel was then run for several time steps to determine
if w(t, x) was increasing or decreasing. If the density decreased for a predetermined
number of time steps, then that implied that m was below the true minimum patch
size, and m lied above otherwise. The original interval was revised and the method
continued until the bisection interval had length less than 0.05, say [a, b]. The max-
imum of the difference between a & b and �∗(Ω, γ ) was then computed. Due to
the computationally intensive nature of the method, r was fixed at 1, α fixed at 0.5,
and only 170 parameter combinations, i.e., (1, D1, 0.5, D0, S0), were considered. The
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Table 10 Absolute maximum error between �∗(Ωi , γ ) and the true minimum patch size with entries in
parentheses representing error relative to the maximum minimum patch size

Mean error SD Minimum error Maximum error

Ω1 : a unit square
Type I DD 0.66 (8.6%) 0.33 (3.5%) 0.05 (1.2%) 1.74 (17.5%)

Type II DD 0.67 (8.5%) 0.38 (4.1%) 0.006 (9.2 × 10−4%) 1.66 (16.7%)

Ω2 : a rectanglewi th lengths 2 and 1
2

Type I DD 1.19 (10.5%) 0.70 (5.1%) 0.05 (0.6%) 3.50 (24.2%)

Type II DD 1.16 (10.2%) 0.62 (5.0%) 0.02 (0.2%) 2.75 (19.0%)

Ω3 : a rectanglewi th lengths 4 and 1
4

Type I DD 3.41 (15.4%) 2.03 (7.7%) 0.06 (0.3%) 8.32 (29.5%)

Type II DD 3.33 (14.8%) 1.95 (7.5%) 0.03 (0.1%) 8.32 (29.5%)

absolute maximum error and error relative to the maximum minimum patch size for
all 170 parameter combinations are summarized in Table 10 for Ω1 a unit square, Ω2
a rectangle with lengths 2 and 1

2 , and Ω3 a rectangle with lengths 4 and 1
4 .

Overall, minimum patch size estimates using the model (11) had a mean relative
error of 7.9–9.8% in the case of a disk and 8.5–15.4% in the case of a rectangle, with
better accuracy coming from both disk and square. These numerical results indicate
that accuracy of the minimum patch size estimate decreased as the patch became more
elongated, as in the case of Ω3. In all cases of patch geometry, the accuracy of the
minimum patch size estimate was linked to how well our assumption that the popu-
lation density is at a stationary state in the matrix whose distribution is approximated

by exponential decay at a rate of
√

S0
D0

away from the patch was satisfied. In other
words, parameter values which provided the best estimate of true minimum patch size
where exactly the ones whose matrix density at steady state was well approximated

by exponential decay at a rate of
√

S0
D0

away from the patch. Although we did not
explore the case of a nonconvex patch geometry, we conjecture that on the parts of the
boundary where the outward normal direction would point toward another part of the
patch, our exponential decay assumption would more than likely not be satisfied for
any range of parameter values. Thus, the model would probably yield much less accu-
rate predictions in that case than a convex patch geometry. These numerical results
also indicate that the model’s use in a particular experiential setup could be validated
empirically via collection of density data in the matrix which could then be compared

to our assumption of exponential decay at a rate of
√

S0
D0

away from the patch.

6.2 An Empirical Example: The Prairie Planthopper Prokelisia crocea

Predicting population persistence over a range of patch sizes, and estimatingminimum
patch size in response to changing landscape context, is an important goal in the field of
landscape ecology (Fahrig 2001;Cronin andReeve2005, 2014)with clear applications
to species conservation (Allen et al. 2001; Solomon et al. 2003). This model provides
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Table 11 Parameter estimates for P. crocea [(from Haynes and Cronin (2006), Cronin (2007), Reeve et al.
(2008)]

Parameter Estimate

Diffusion

Within cordgrass (brome matrix) (D) 0.1967 (0.1130, 0.3437) m2/day

Within cordgrass (mudflat matrix) (D) 0.2956 (0.1773, 0.4933) m2/day

Within brome (D0) 0.1967 (0.1130, 0.3437) m2/day

Within mudflat (D0) 0.7669 (0.1882, 3.1245) m2/day

Per-capita patch growth rate (r ) 0.045 per day

Matrix death rate (same for brome and mudflat) (S0) 0.36 per day

Probability of remaining in the patch (α)

Brome 0.83 (0.704, 0.91)

Mudflat 0.976 (0.961, 0.986)

Numbers in parentheses are 95% confidence intervals

a framework for making these predictions, but there are relatively few species for
which there are sufficient empirical data to estimate model parameters, particularly
with regard to different landscape configurations (e.g., changing matrix composition).
The planthopper P. crocea is one such exception. In addition to extensive data on the
dispersal, boundary behavior and response to different matrix types, this is the only
species to our knowledge for which there are also empirical data on the influence of
matrix composition on population persistence—essential data for validating themodel
predictions.

P. crocea is a specialist herbivore of prairie cordgrass (Spartina pectinata) which
grows in discrete clonal patches ranging in size from< 1m2 to several hectares (Cronin
2003). The matrix within which these patches are embedded consists of three basic
vegetation types: (1) periodically flooded mudflats, (2) mixtures of native grasses,
and (3) monospecific stands of smooth brome (Bromus inermis) (Haynes and Cronin
2003). The latter matrix type is similar in stature and appearance to cordgrass, but
the planthopper will not feed on it. Mark–release–recapture experiments have been
conducted to quantify patterns of movement within cordgrass patches and in a mudflat
or brome matrix and the redistribution of the planthopper in each of these habitats is
well described by a diffusion model (Haynes and Cronin 2006; Reeve et al. 2008).
In these same studies, the boundary behavior of the planthoppers was also quantified.
Relevant parameter estimates from these experiments are reported in Table 11. Also
included in the table is an estimate of the planthopper’s per-capita growth rate, r ,
derived from an experiment using caged planthoppers (from Cronin (2007)). Using
a regression model to fit the relationship between the actual per-capita growth rate
between successive generations and planthopper density, r was the estimated growth
rate at zero density.

Observations made in the experiments performed in Haynes and Cronin (2006),
Reeve et al. (2008) suggest that the Type III DD scenario best fits the planthopper
when in patches surrounded by smooth brome. In particular, diffusion rates and step
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lengths are similar within cordgrass and brome. In contrast, step lengths and diffusion
rates are substantially greater in the more hostile mudflat matrix than in the cordgrass
patches, best reflecting the Type I DD scenario. Also, when thematrix is mudflat, there
is a much stronger bias toward staying in the patch (α) than when the matrix is brome.

In a corresponding landscape-scale experiment, Cronin et al. (2004), Cronin (2007)
demonstrated that matrix composition could strongly influence planthopper persis-
tence in a patch. Planthoppers released into experimentally created cordgrass patches
(0.66 m2) embedded in a mudflat matrix persisted for five generations, achieving rel-
atively high and constant densities after the first generation [Fig. 2 in Cronin (2007)].
In contrast, planthoppers released into cordgrass patches in a brome matrix steadily
declined and went extinct in all cases by the fifth generation. Although patch size
was not explicitly considered in this experiment, the study suggests that the minimum
patch size for planthoppers is < 0.66 m2 when the matrix is mudflat and > 0.66 m2

when the matrix is brome.
Using the model framework, and parameter estimates from Table 3, we gener-

ate predictions regarding the relationship between planthopper persistence and patch
size for the three discontinuous density (DD) patch–matrix interface scenarios. The
continuous density scenario, in which there is no boundary behavior or difference in
movement behavior between matrix types, clearly does not apply to P. crocea and was
omitted from this analysis. In this analysis, we allow the matrix to vary along a contin-
uum in composition from pure mudflat (0% brome) to pure brome (100% brome). The
two extremes mimic the experimental work described above, but, in nature, the matrix
can be a mixture of the two and therefore it will be valuable to predict minimum patch
sizes along this continuum. As a test of the validity of these models, we also compare
these findings to the qualitative empirical conclusions about matrix composition (pure
mudflat or pure brome) and estimates of minimum patch size from both (11) and the
mechanistically correct model for a disk in two dimensions, (43) (see above). Finally,
a sensitivity analysis is performed to evaluate which empirically derived parameter
estimates have the greatest influence on predictions about the relationship between
persistence and patch size. In choosing ranges of the parameters for the sensitivity
analysis, we employed 95% confidence intervals for those parameters which we have
them. For parameters without confidence intervals, we used the interval from 50% of
the parameter estimate to 200% of the estimate.

A linear interpolation was employed for D, D0, α, and S0 using the data points
for 0% and 100% brome from Table 11. With these interpolations and the remaining
parameter values from Table 11, a graph of brome percentage versus minimum patch
size was generated using both the approximate model (11) and the mechanistically
correct model for a disk in two dimensions (43) for both Type I DD and Type II
DD scenarios in Fig. 2 (recall that Type III DD is only appropriate for the case of
100% brome when D = D0). Based upon the experimental design of the patches,
Ω was taken as a disk. For both scenarios, the minimum patch size increased as
the percentage of brome in the matrix increased. The strongly reflecting boundary
when matrix composition was predominantly mudflat (probability of remaining in the
patch, α = 0.976; Table 11) results in reduced losses of planthoppers from the patch,
allowing population persistence in smaller patches. Under the Type I DD scenario,
which best reflects planthopper movement and boundary behavior when the matrix is
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Fig. 2 The predicted relationship between matrix composition and minimum patch size for the planthopper,
P. crocea. Separate curves are reported for each of the discontinuous patch–matrix interface scenarios, as
well as for the models (11) and (43) (Color figure online)

pure mudflat (0% brome), the minimum patch size is estimated to be 0.35 m2 using
(11) and 0.65 m2 using (43), whereas under the Type II DD scenario, the minimum
patch size is estimated to be 0.22 m2 using (11) and 0.47 m2 using (43). In contrast,
when the matrix is predominantly smooth brome, a situation that best reflects the
Type III DD scenario, the lower probability of remaining in the patch (α = 0.83),
slower rate of diffusion in the matrix (D0 is 0.767 in mudflat and 0.197 in brome) or
shorter step lengths, decreases the likelihood of returning to the patch. A larger patch
is needed to support a viable planthopper population. The minimum patch size for all
three DD scenarios when the matrix is brome is estimated to be 2.10 m2 using (11) and
2.33 m2 using (43). Qualitatively, these model results are in accord with experimental
predictions regarding minimum patch size (Cronin and Haynes 2004; Cronin 2007).
In those experiments, planthoppers in cordgrass patches 0.66 m2 in size persisted for
five generations when the matrix was 100% mudflat but went extinct when the matrix
was 100% brome.

A sensitivity analysis using both (11) and (43) for the case where the matrix was
100% mudflat or 100% brome (see Table 12) revealed that the intrinsic growth rate,
followed by the probability of remaining in the patch are the two most important
parameters in predicting minimum patch size. Here, we only focused on the Type I
DD scenario for the mudflat and the Type III DD scenario for the brome as they best
reflect the behavior of these planthoppers under the respective matrix conditions. If
the true value of the intrinsic growth rate was known, the variance of the predictions
of persistence could be reduced by 52–82% for each matrix type. Similarly, if the true
value of α was known, it would reduce the variance by 5–24% for each matrix type.
For all parameters, the importance of direct effects considerably outweighed those
of interactive effects. This analysis indicates that for this planthopper, more accurate
minimum patch size estimates can be achieved by using more resources in empirical
studies to estimate intrinsic growth rate and probability of remaining in the patch than
the remaining parameters.
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Table 12 Sensitivity analysis for
planthopper minimum
population size for the cases
using (11) and (43) where the
matrix was 100% mudflat and
the Type I DD scenario was used
and 100% brome and the Type
III DD scenario was used,
respectively

r D S0 D0 α

Type I AND Type III DD using (11)

Main effect (%) 52.0 6.1 10.1 0.0 23.6

Interaction effect (%) 6.9 1.8 2.7 0.0 5.3

Total effect (%) 58.8 7.9 12.8 0.0 29.0

Type I DD using (43)

Main effect (%) 81.5 5.7 0.3 0.0 6.3

Interaction effect 9.4 7.2 0.7 0.0 5.2

Total effect (%) 90.9 12.9 1.0 0.0 11.5

Type III DD using (43)

Main effect (%) 73.5 4.5 0.3 0.0 5.3

Interaction effect (%) 15.6 11.6 0.5 0.0 4.6

Total effect (%) 89.1 16.1 0.8 0.0 9.9

7 Summary and Conclusions

As the spatial heterogeneity of the landscape is increased through habitat fragmenta-
tion, the quality and structure of thematrix has the potential to altermovement behavior
of the species inhabiting the landscape, ultimately changing the ability of the remnant
patches to support viable and persistent populations [e.g., Tscharntke et al. (2002),
Schooley and Wiens (2004), Haynes and Cronin (2006), Cronin and Reeve (2005),
Reeve and Cronin (2010)]. Even though ecologists are able to gather a wealth of move-
ment data at a small scale, they often struggle to explain observations of population
density at the patch or landscape level. This work helps to formalize the connection
between small-scale movement and patch-level predictions of persistence through a
mechanisticmodel basedon the reaction–diffusion framework.Themodel is capable of
incorporating essential information about edge-mediated effects such as patch prefer-
ence, movement behavior, and matrix-induced mortality at the patch/matrix interface.
This framework extends the model, and in particular the boundary condition used to
model the patch/matrix interface, developed in Maciel and Lutscher (2013) to a more
general one-, two-, or three-dimensional patch with a smooth boundary. Numerical
exploration of the accuracy of the framework in several convex patch geometries indi-
cates that if the steady-state density distribution in the matrix is well approximated by
a certain exponential decay, then the framework will yield fairly accurate estimates of
patch persistence for the parameter of interest. Finally, this framework allows for the
consequences of four different patch–matrix interface scenarios considered in Maciel
and Lutscher (2013), Cantrell and Cosner (2007) to be studied. As we illustrate with a
well-studied planthopper species living in a highly fragmented landscape, the model’s
explicit parameters can be estimated through empirical studies and used to predict crit-
ical populationmetrics like persistence and provide an estimate ofminimumpatch size
under the context of changing landscape structure. Additionally, the model framework
permits an explicit analysis and comparison of the implications of these four different
patch/matrix interface scenario assumptions.
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Our first conclusion is that the observed discrepancies in predictions of minimum
patch size between the different interface scenarios discussed in Maciel and Lutscher
(2013) are now confirmed for more general one-, two-, or three-dimensional patches
with sufficiently smooth boundary.Under any interface scenario, exposure to an unsuit-
ablematrixwas shown to induce aminimumpatch size required for themodel to predict
persistence. With respect to the probability that an organism remained in the patch
upon reaching the patch/matrix interface or the death rate in the matrix, the behav-
ior of the minimum patch size was consistent across interface scenarios. Minimum
patch size decreased as the probability of staying in the patch increased [see Cronin
(2007)] and increased as the death rate in the matrix increased. However, with regard
to the matrix diffusion rate, the model showed starkly different predictions across
interface scenarios. As suggested in Maciel and Lutscher (2013), these results show
that whether organisms move faster or slower in a patch versus the matrix critically
affects population patterns and needs to be considered carefully. In particular, the same
species could inhabit patches of the exact same size and shape but surrounded by a
matrix structure that induces fast movement in the matrix surrounding the first patch
and slow movement in the second. If the organism maintained the same movement
step sizes but altered its movement probability in the patch versus the matrix (Type
II DD), then the organism may be unable to colonize the second patch, while able to
colonize the first. If the organism instead altered its movement step sizes in the patch
versus the matrix but maintained the same movement probability in both (Type I DD),
then colonization of both patches would be independent of the matrix diffusion rate.
In a sense, the global nature of our results shows that the mechanism behind these
discrepancies is invariant with respect to (reasonable) domain geometry. Overall, the
models suggest that minimum patch size for population persistence is critically depen-
dent on these aspects of animal movement and boundary behavior [see also Cantrell
et al. (2001), Ovaskainen and Cornell (2003), Reeve and Cronin (2010), Maciel and
Lutscher (2013)]. Interestingly, of the many methods used to estimate minimum patch
size for real species, they are rarely mechanistic and do not consider these impor-
tant dispersal parameters [McCoy and Mushinsky (2007); but see Reeve and Cronin
(2010)].

The utility of this model was demonstrated with a planthopper (P. crocea) whose
dispersal behavior has been studied extensively by one of the authors. The model
not only provided predictions about minimum patch size for a pure mudflat and pure
brome matrix but also provided predictions for minimum patch size for any propor-
tion of the two matrix types. These models demonstrated that minimum patch size
in this species grew with increasing percentage of brome in the matrix. Qualitatively,
the model results were also in accord with experimental predictions regarding mini-
mum patch size. Interestingly, as smooth brome has invaded tall-grass prairies of the
Great Plains, cordgrass habitat has disappeared, resulting in reduced size of cordgrass
patches (Dillemuth et al. 2009). The high extinction rate of planthopper populations
in small brome-embedded patches could be explained by our model prediction that
for planthoppers to persist, brome-embedded patches need to be at least 2.103 m2.

Admittedly, the data needed to parameterize this model are challenging to obtain
and rarely available, but it is becoming increasingly obvious that these behaviors are
important to understanding the spatial and temporal dynamics of species in heteroge-
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neous landscapes (Ovaskainen 2004; Cronin and Reeve 2005, 2014). Our sensitivity
analysis revealed that most critical parameters for obtaining precise predictions about
species persistence and minimum patch size for persistence are the intrinsic growth
rate and the probability that the organisms will remain in the patch upon encountering
the edge. This finding underscores the importance of boundary behavior and the need
for careful experimental studies that quantify it. Experimental studies like Ries and
Debinski (2001), Goodwin and Fahrig (2002), Haynes and Cronin (2006), Reeve et al.
(2008) provide a template for collecting these important field data.

The second conclusion of this work is that care must be taken in studying the
dynamics of a reaction diffusion model containing a form of a Robin boundary con-
dition when choosing the parameter of interest, i.e., determining the dynamics of the
model as a single parameter is varied and the remaining parameters held fixed. Such a
model’s boundary condition can take on different forms depending on the parameter of
interest and interface scenario assumption. In addition to establishing the existence of
a minimum patch size required for predictions of persistence by the model, an analog
was also established for intrinsic growth rate by considering the intrinsic growth rate
as the parameter of interest. In this case, the existence of such a minimum growth rate
appeared under each of the interface scenarios. The boundary condition for patch size
as the parameter of interest was consistent across interface scenarios, as well as the
boundary condition for intrinsic growth rate. However, when exploring the dynam-
ics of the model with patch diffusion rate as the parameter of interest, the boundary
condition was completely different between continuous density/Type I DD/Type III
DD and Type II DD. The mathematics literature contains vast amount of works detail-
ing the dynamics of population models similar to the ones studied here. Typically,
these models are assumed to have already been scaled to a dimensionless form. As
an axillary conclusion of this work, we assert that results given in the mathemati-
cal literature should be carefully viewed in light of the difference that patch/matrix
interface assumptions made on the scaling of the model. In other words, a scaled,
dimensionless reaction diffusion model contains implicit assumptions regarding the
patch/matrix interface.

In conclusion,wehavemade an attempt to tackle extension of the patch/matrix inter-
face scenarios in Maciel and Lutscher (2013) to patches in two and three dimensions.
This framework is built upon an assumption regarding the stationary state of population
density in the matrix. For one-dimensional patches, the model under this assumption
will exactly capture the mechanistically correct model results (e.g., minimum patch
size predictions) ofMaciel and Lutscher (2013), and based upon our numerical results,
we conjecture that it will provide a reasonable approximation in simply connected,
convex patches in higher dimensions. Analysis of our model shows confirmation of
many results from previous authors including those in the now famous Skellam (1951),
further confirming its validity as a framework for exploring the effects of patch/matrix
interface scenarios on population persistence in higher-dimensional patches. The util-
ity of this framework is demonstrated via application to a well-studied planthopper
species (Prokelisia crocea) living in a highly fragmented landscape. Using experi-
mentally derived data from various sources to parameterize the model, we show that,
qualitatively, the model results are in accord with experimental predictions regarding
minimum patch size of P. crocea. Finally, our results seem to indicate that great care
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should be taken by both mathematicians and ecologists in their mathematical analysis
of nondimensional models and their parameter dependence.

Acknowledgements The authors would like to thank the three anonymous reviewers whose suggestions
greatly improved this manuscript.

Appendix A Sensitivity Analysis Methodology

In this subsection, we will briefly describe the sensitivity analysis methodology
which was applied to the model. Following Saltelli et al. (2008, 2010), we gener-
ate a ten-dimensional list of quasi-random parameter values, i.e., tuples of the form
(x01 , x

0
2 , x

0
3 , x

0
4 , x

0
5 , x

1
1 , x

1
2 , x

1
3 , x

1
4 , x

1
5), of length N based on the Sobol quasi-random

sequence. Two matrices A and B of size (N , 5) are then constructed using the first
half of the N tuples for the rows of A and the remainder for the rows of B. Thus, a
row of the matrix A or B will contain values for these five parameters. A third matrix
As1,s2,...si
B is then constructed using all the columns of A except columns s1, s2, . . . si

are taken from the matrix B, where s1, s2, . . . si , i ∈ {1, 2, 3, 4, 5}. For example, A2
B

is matrix A where the second column is taken from B and A2,3
B is matrix A where the

second and third columns are taken from B.
We now define the function h(x) as the output of the model (either minimum patch

size, minimum intrinsic growth rate, or maximum patch diffusion rate) given the five
parametersx = (x1, x2, x3, x4, x5) and afixed patch geometry inΩ0.We then compute
the model output for all input values in the three matrices, A,B, and As1,s2,...,si

B giving
the N -dimensional vectors h(A), h(B), and h(As1,s2,...,si

B ). Using these matrices, we
can generate an estimate of the first-order interaction (main effect) of xi

Sxi = 1
N

∑N
m=1

[
h(Am )

(
h
(
(Ai

B)m
)−h(Bm )

)]

1
2N−1

∑N
m=1[(h(Am )−h0)2+(h(Bm)−h0)2]

and total effect index of xi

STxi =
1
2N

∑N
m=1

(
h(Bm)−h

(
(Ai

B)m

))2

1
2N−1

∑N
m=1[(h(Am )−h0)2+(h(B j )−h0)2]

,

where i ∈ {1, 2, 3, 4, 5}, h0 = 1
2N−1

∑N
m=1 [h(Am) + h(Bm)], and Am,Bm represent

the m-th rows of the matrices A and B, respectively.
Since the modeling framework is presented in a general form in order to accommo-

date as many species as possible, no species-specific parameter ranges were chosen.
Instead, all the parameters’ ranges were set to [0.01, 100], with the exception of the
probability of remaining in the patch upon reaching the patch/matrix interface, α,
whose range was chosen as [0.01, 0.99]. An algorithm was implemented in Math-
ematica (Wolfram Research Inc., version 11.3), (1) to compute estimates of these
sensitivity indices. In the algorithm, N was initially set to 250 and the main effect
indices were calculated iteratively as N was incremented by 250 each time. This pro-
cess continued until the norm of the difference between the vectors of successive main
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effect indices was within our predetermined goal of 0.0005, indicating convergence
of the estimated indices to the actual ones. The final value of N was then used to
compute estimates for the total effect index. A simple geometry was chosen for Ω0 in
that it was only considered as a disk in two spatial dimensions. As changes in patch
geometry affect the predictions of the model, an extension of our results could include
preforming a sensitivity analysis on themodel with patch geometry counted and varied
as a parameter in the analysis. This is, however, out of the scope of this work.

Appendix B Statement and Proof of Lemma 1

Lemma 1 Let λ1(Ω0, β) be the principal eigenvalue of (14)with corresponding eigen-
function, φ, which is chosen such that φ > 0; x ∈ Ω0 and ||φ||∞ = 1. Then, we have
the following:

(a) λ1(Ω0, 0) = 0, λ1(Ω, β) is a strictly increasing function of β, and λ1(Ω0, β) →
λ01(Ω0) as β → ∞, where λ01(Ω0) is the principal eigenvalue of Laplace’s equa-
tion with Dirichlet boundary conditions (u = 0; x ∈ ∂Ω0).

(b) λ1(Ω0, β) is a differentiable function of β.
(c) λ1(Ω0, β) is a concave function of β.

The proof of (a) and (b) is standard, see Cantrell and Cosner (2003). The proof of (c)
is as follows. For brevity, we denote λ1(β) = λ1(Ω0, β). We begin by differentiating
(14) with respect to β yielding

−Δφ′(β) = λ′
1(β)φ(β) + λ1(β)φ′(β); x ∈ Ω0

∂φ′(β)

∂η
+ φ(β) + βφ′(β) = 0; x ∈ ∂Ω0, (26)

where ′ denotes differentiation with respect to β. Next, we calculate λ′
1(β) for any

β > 0. By Green’s second identity, we have:

∫

Ω0

[
(−Δφ(β)) φ′(β) + φ(β)

(
Δφ′(β)

)]
dx =

∫

∂Ω0

−∂φ(β)

∂η
φ′(β)

+φ(β)
∂φ′(β)

∂η
ds (27)

But, we also have that

∫

Ω0

[
(−Δφ(β)) φ′(β) + φ(β)

(
Δφ′(β)

)]
dx

=
∫

Ω0

λ1(β)φ(β)φ′(β) − φ(β)λ′
1(β)φ(β) − λ1(β)φ(β)φ′(β)dx

= −λ′
1(β)

∫

Ω0

[
φ2(β)

]
dx (28)
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and

∫

∂Ω0

−∂φ(β)

∂η
φ′(β) + φ(β)

∂φ′(β)

∂η
ds

=
∫

∂Ω0

[
βφ(β)φ′(β) − φ2(β) − βφ(β)φ′(β)

]
ds

= −
∫

∂Ω0

φ2(β)ds. (29)

Combining (28) and (29) gives,

λ′
1(β) =

∫

∂Ω0
φ2(β)ds

∫

Ω0
φ2(β)dx

> 0; β ≥ 0. (30)

Now, by Green’s first identity and (14), we have

∫

Ω0

[(−Δφ(β)) φ(β)] dx =
∫

Ω0

|∇φ(β)|2 dx −
∫

∂Ω0

∂φ(β)

∂η
φ(β)ds

=
∫

Ω0

|∇φ(β)|2 dx + β

∫

∂Ω0

φ2(β)ds. (31)

Also, from (14) we have that

∫

Ω0

[(−Δφ(β)) φ(β)] dx = λ1(β)

∫

Ω0

φ2(β)dx . (32)

Combining (31) and (32) and solving for
∫

∂Ω0
φ2(β)ds yields

∫

∂Ω0

φ2(β)ds = 1

β
λ1(β)

∫

Ω0

φ2(β)dx − 1

β

∫

Ω0

|∇φ(β)|2 dx . (33)

Thus, if we combine (30) with (33), then we have

λ′
1(β) = 1

β
λ1(β) − 1

β
∫

Ω0
φ2(β)dx

∫

Ω0

|∇φ(β)|2 dx; β > 0. (34)

Hence,

λ′
1(β) ≤ λ1(β)

β
; β > 0, (35)

which proves that λ1(β) is a concave function for β > 0. �
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Appendix C Special Case of a Disk-Shaped Patch in Two Dimensions

In this subsection, we present a derivation and mathematical analysis of a mechanisti-
cally correct model (at least in the sense of steady states and their stability properties)
in the special case of a disk-shaped patch in two dimensions with radius � > 0 and
patch population density denoted by v(t, ρ), namely

vt = D

(

vρρ + 1

ρ
vρ

)

+ rv f (v); t > 0, ρ ∈ (0, �)

v(0, ρ) = v0(ρ); ρ ∈ (0, �)

vρ = 0; t > 0, ρ = 0

Dvρ +
√
S0D0

κ
H

(√
S0
D0

�

)

v = 0; t > 0, ρ = � (36)

where

H(s) = K1(s)

K0(s)
, (37)

and K0, K1 are modified Bessel functions of the second kind with all the parameters
defined as in Sect. 2.

C.1 Derivation

Following the modeling setup as in Sect. 2, we assume that the patch is disk-shaped
with radius � > 0, i.e., Ω = {

x ∈ R
2 | |x | < �

}
, with u(t, x) representing the density

in Ω , and the matrix is the region exterior to Ω , i.e., Ωe = {
x ∈ R

2 | |x | ≥ �
}
, with

w(t, x) representing the density in the matrix. Assuming a growth law similar to (2)
in the matrix and the same patch/matrix interface assumptions as in Sect. 2.1, we
have the following system to describe the population dynamics of an organism in this
patch/matrix system:

ut = DΔu + ru f (u); t > 0, x ∈ Ω

wt = D0Δw − S0w; t > 0, x ∈ Ωe

u(0, x) = u0(x); x ∈ Ω

w(0, x) = 0; x ∈ Ωe

D
∂u

∂η
= D0

∂w

∂η0
; t > 0, |x | = �

u(t, x) = κw(t, x); t > 0, |x | = �

w(t, x) → 0; t > 0, as |x | → ∞. (38)
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Making use of the rotational symmetry of the patch/matrix system, we convert the
system (u(t, x), w(t, x)) to (v(t, ρ), ω(t, ρ)) yielding

vt = D

(

vρρ + 1

ρ
vρ

)

+ rv f (v); t > 0, ρ ∈ (0, �)

ωt = D0

(

ωρ + 1

ρ
ωρ

)

− S0ω; t > 0, ρ ∈ (�,∞)

v(0, ρ) = v0(ρ); ρ ∈ (0, �)

ω(0, ρ) = 0; ρ ∈ (�,∞)

Dvρ = D0ωρ; t > 0, ρ = �

v(t, �) = κω(t, �); t > 0

vρ = 0; t > 0, ρ = 0

ω(t, ρ) → 0; t > 0, as ρ → ∞. (39)

We now make the assumption that the population density is at a stationary state in the

matrix whichmust be of the formω(ρ) = C1K0

(√
S0
D0

ρ
)
for ρ ≥ � [see, for example,

Skellam (1951)]. Notice that ω′(ρ) = −C1

√
S0
D0

K1

(√
S0
D0

ρ
)
. Thus, applying the

interface conditions at ρ = � in (39) to this solution yields

Dvρ +
√
S0D0

κ

K1

(√
S0
D0

�
)

K0

(√
S0
D0

�
)v = 0; t > 0, ρ = �. (40)

With this Robin boundary condition, it is now possible to consider the problem only
inside the patch via the dynamical problem, (36). Although the nonstationary solutions
of (36) are not equivalent to those of the original patch/matrix system in (38), the
argument given in Potapov and Lewis (2004) ensures that the stationary solutions of
(36) and their stability properties are equivalent to the ones in the original system.

Applying the scaling

ρ̃ = ρ

�
& t̃ = r t, (41)

and dropping the tilde, (36) becomes:

vt = 1

λ

(

vρρ + 1

ρ
vρ

)

+ v f (v); t > 0, ρ ∈ (0, 1)

v(0, ρ) = v0(ρ); ρ ∈ (0, 1)

vρ = 0; t > 0, ρ = 0

vρ + �
√
S0D0

κD
H

(√
S0
D0

�

)

v = 0; t > 0, ρ = 1 (42)
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where λ = r�2
D is unitless. In Table 13, we enumerate the different possibilities for the

boundary condition of (42) as the different scenarios and patch attributes are changed.
We then write the multiparameter model (42) in such a way as to ensure that the
original parameters are split into three unitless composite parameters, namely λ, γ1,

and γ2, in such a way that the parameter in question (r , D, or �) occurs only in λ.
This process gives several different forms of the boundary condition in (42) as listed
in Table 13. We note that under the assumption of D = D0 in CD and Type III DD
interface scenarios, the boundary conditions for these two cases are different than that
of Type I DD. Recall that the CD scenario can be considered as a special case of Type
III DD in which α = 1

2 .
As in Sect. 2, all twelve parameters of interest and interface condition pairs can be

treated mathematically via study of the multiparameter problem:

vt = 1

λ

(

vρρ + 1

ρ
vρ

)

+ v f (v); t > 0, ρ ∈ (0, 1)

v(0, ρ) = v0(ρ); ρ ∈ (0, 1)

vρ = 0; t > 0, ρ = 0

vρ + λμ1γ1H(λμ2γ2)v = 0; t > 0, ρ = 1 (43)

where μ1, μ2 = 0, 1
2 and the meaning of the unitless parameters γ1, γ2 will depend

on the parameter of interest and interface type.

C.2 Mathematical Analysis of (43)

As in Sect. 3, the dynamics of (43) are almost completely determined by its steady
states, i.e., solutions of

−
(

v′′ + 1

ρ
vρ

)

= λv f (v); ρ ∈ (0, 1)

v′(0) = 0

v′(1) + λμ1γ1H(λμ2γ2)v(1) = 0. (44)

Given a solution of (44), v, its local stability properties can be determined by exam-
ining the sign of the principal eigenvalue, σ1 = σ1(Ω0, λ, γ1, γ2, μ1, μ2, v), of the
linearized eigenvalue problem associated with (44):

−
(

φ′′ + 1

ρ
φ′

)

− λ
[
f (v) + v f ′(v)

]
φ = σφ; ρ ∈ (0, 1)

φ′(0) = 0

φ′(1) + λμ1γ1H(λμ2γ2)φ(1) = 0 (45)

with Ω0 = (0, 1) and corresponding eigenfunction, φ, which can be chosen such that
φ > 0; x ∈ [0, 1] and ||φ||∞ = 1.
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As in Sect. 3, model predictions of persistence can be determined by studying
the stability of the trivial steady state, v ≡ 0, via consideration of the sign of
σ1(Ω0, λ, γ1, γ2, μ1, μ2, 0). In the case of a reaction term satisfying the logistic-
type assumptions, (F1) and (F2), Theorem 1 allows an exact description of the global
dynamics of (43) based solely on the sign of σ1(Ω0, λ, γ1, γ2, μ1, μ2, v). In the fol-
lowing analysis, wewill explicitly describe the relationship between a given parameter
of interest (r , D, or �) and the persistence of the population under each of the four
interface scenarios given in Table 1 via comparison of the linearized eigenvalue prob-
lem for the trivial steady state, (45), with the eigenvalue problem (14). Uniqueness of
the principal eigenvalue again implies that:

λ1(Ω0, β) = σ1(Ω0, λ, γ1, γ2, μ1, μ2, 0) + λ (46)

β = λμ1γ1H(λμ2γ2). (47)

In the case of μ2 = 0 and μ1 = 0 or 1
2 , the mathematical analysis of (43) exactly

follows that of Sect. 4 with γ = γ1H(γ2). The only remaining case is μ2 = μ1 = 1
2 ,

for which (46) & (47) become:

σ1(Ω0, λ, γ1, γ2, 0.5, 0.5, 0) = λ1(Ω0,
√

λγ1H(
√

λγ2)) − λ (48)

Theorem 4 connects the sign of σ1(Ω0, λ, γ1, γ2, 0.5, 0.5, 0) to ranges of parameter
space for λ, γ1, and γ2.

Theorem 4 Let γ1, γ2 > 0. Then, we have the following:

(a) there exists a λ∗
3(Ω0, γ1, γ2) > 0 such that

(1) if λ ≤ λ∗
3(Ω0, γ1, γ2), then σ1(Ω0, λ, γ1, γ2, 0.5, 0.5, 0) ≥ 0

(2) if λ > λ∗
3(Ω0, γ1, γ2), then σ1(Ω0, λ, γ1, γ2, 0.5, 0.5, 0) < 0.

(b) λ∗
3(Ω0, 0, γ2) = 0 and λ∗

3(Ω0, γ1, γ2) → λ01(Ω0) as γ1 → ∞ for all γ2 > 0.

A proof of Theorem 4 is given in Sect. C.4.

C.3 Results

Interpreting λ as being proportional to the intrinsic growth rate r , we can employ
Corollary 1 to arrive at a minimum intrinsic growth rate given in (23) with γ =
γ1H(γ2), namely

r∗∗(Ω0, γ1, γ2) = r∗(Ω0, γ1H(γ2)). (49)

Similarly, interpreting λ as being proportional to the patch diffusion rate D, we can
employ Corollary 2 to arrive at a maximum patch diffusion rate, namely

D∗∗(Ω0, γ1, γ2) =

⎧
⎪⎨

⎪⎩

D∗(Ω0, γ1H(γ2)); Type I DD

D∗(Ω0, γ1H(γ2))); Type II DD
r�2

λ∗
3(Ω0,γ1,γ2)

; CD or Type III DD

(50)
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Finally, interpreting λ as being proportional to the patch size �, we present a corre-
spondingminimumpatch size required for a predictionof persistence for the theoretical
population given a fixed patch diffusion rate and patch intrinsic growth rate:

�∗∗(Ω0, γ1, γ2) =
√

D
r λ∗

3(Ω0, γ1, γ2). (51)

Using (48) and Theorem 4 yields the following result detailing the connection between
the patch size and predictions of persistence from the model.

Corollary 4 Let γ1, γ2 > 0 be defined as in Table 13 according to the interface scenario
assumed. Then, we have the following:

(a) if � > �∗∗(Ω0, γ1, γ2), then (43) has a unique positive equilibrium, v, that is a
global attractor for nonnegative nontrivial solutions of (43);

(b) if � ≤ �∗∗(Ω0, γ1, γ2), then v ≡ 0 is a global attractor for nonnegative nontrivial
solutions of (43).

C.4 Proof of Theorem 4

Before we present a proof for Theorem 4, we first present and prove a useful lemma,
namely

Lemma 2 Let g(s) = √
sγ1H(

√
sγ2). Then, for all γ1, γ2 > 0 we have the following:

(a) λ1(Ω0, g(λ)) is a strictly increasing function of λ for all λ > 0
(b) λ1(Ω0, g(λ)) → 0 as λ → 0+ and λ1(Ω0, g(λ)) → λ01(Ω0) as λ → ∞
(c) λ1(Ω0, g(λ)) is a concave function of λ for all λ > 0.

Proof of Lemma 2 To prove (a), we first note that k1(s) > k0(s) > 1; s > 0 [see Yang
and Chu (2016)]. It is then easy to see that

d
dλ

[λ1(Ω0, g(λ))] = λ′
1(Ω0, g(λ))

γ1γ2

(
k21

(√
λγ2

)
−k20

(√
λγ2

))

2k20

(√
λγ2

) > 0

sinceλ1(Ω0, β) is strictly increasing inβ (seeLemma1). To show (b),wefirst consider
the Taylor series for k0 and k1 both centered at s = 0, namely

k1(s) = 1

s
+ O(s) (52)

k0(s) = −Γ + ln(2) − ln(s) + O(s) (53)
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where Γ is Euler’s constant. Thus,

lim
λ→0+λ1(Ω0, g(λ)) = λ1

⎛

⎝Ω0, lim
λ→0+γ1

√
λ
k1

(√
λγ2

)

k0
(√

λγ2

)

⎞

⎠

λ1

⎛

⎝Ω0, lim
λ→0+γ1

√
λ

1√
λγ2

+ O
(√

λγ2

)

−Γ + ln(2) − ln
(√

λγ2

)
+ O

(√
λγ2

)

⎞

⎠.

(54)

Making the change of variables t = √
λγ2, (54) becomes

lim
λ→0+λ1(Ω0, g(λ)) = λ1

(

Ω0, lim
t→0+

γ1
γ2

1+O
(
t2

)

−Γ +ln(2)−ln(t)+O(t)

)

= 0 (55)

since by Lemma 1 λ1(Ω0, β) → 0 as β → 0+. Also, from Yang and Chu (2016),
H(

√
λγ2) → 1 as λ → ∞ for fixed γ2 > 0 and thus g(λ) → ∞ as λ → ∞. This

fact and Lemma 1 give that λ1(Ω0, g(λ)) → λ01(Ω0) as λ → ∞.
Finally, to show (c), we note that since Lemma 1 gives that λ1(Ω0, β) is concave

in β and λ1(Ω0, β) is strictly increasing in β it suffices to show that g(s) is concave
in s, or equivalently that

g′(λ) = γ1γ2

2

⎛

⎝
k1

(√
λγ2

)

k0
(√

λγ2

) − 1

⎞

⎠ ≤
γ1k1

(√
λγ2

)

√
λk0

(√
λγ2

) = g(λ)

λ
; λ > 0. (56)

It is easy to see that (56) will hold as long as

1√
λ

(√
λγ2 − 2

) k1
(√

λγ2

)

k0
(√

λγ2

) − γ2 ≤ 0; λ > 0. (57)

Clearly, (57) will hold if
√

λγ2 − 2 ≤ 0. Thus, assume
√

λγ2 − 2 > 0. Using the fact

that
k1

(√
λγ2

)

k0
(√

λγ2

) < 1+ 1
2
√

λγ2
for all λ, γ2 > 0 [see Yang and Chu (2016)], (57) becomes

1√
λ

(√
λγ2 − 2

) k1
(√

λγ2

)

k0
(√

λγ2

) − γ2 <
1√
λ

(√
λγ2 − 2

) 2
√

λγ2 + 1

2
√

λγ2
− γ2

= 1

2γ2λ

(
2λγ 2

2 − 3
√

λγ2 − 2
)

− γ2

= 1

2γ2λ

(
−3

√
λγ2 − 2

)
< 0. (58)
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Fig. 3 Illustration of Theorem (Color figure online) 4

Hence, g(λ) is a concave function of λ for λ > 0, which implies λ1(Ω0, g(λ)) is a
concave function of λ for all λ > 0. �

Now we present a proof of Theorem 4.

Proof of Theorem 4 Define g(s) = √
sγ1H(

√
sγ2). and let γ1, γ2 > 0. From Lemma

2, we have that λ1(Ω0, g(0)) = 0, λ1(Ω0, g(λ))) is a strictly increasing and concave
function of λ for λ > 0, and λ1(Ω0, g(λ)) → λ01(Ω0) as λ → ∞. Also, from
the proof of Lemma 2 and the fact that we can choose φ > 0; x ∈ Ω0, we have
that λ′

1(Ω0, g(0)) > 0. It is now clear that λ1(Ω0, g(λ)) − λ > 0 for λ > 0 and
small enough. But, since λ1(Ω0, g(λ)) is concave, strictly increasing, and bounded in
λ there exits a unique λ∗

3(Ω0, γ1, γ2) > 0 such that σ1(Ω0, λ, γ1, γ2, 0.5, 0.5, 0) =
λ1(Ω0, g(λ))−λ ≥ 0 for λ ∈ [

0, λ∗
3(Ω0, γ1, γ2)

]
and σ1(Ω0, λ, γ1, γ2, 0.5, 0.5, 0) =

λ1(Ω0, g(λ)) − λ < 0 for λ > λ∗
3(Ω0, γ1, γ2), proving part (a) (see Fig. 3). Part (b)

is clear from Lemma 2 and the previous argument. �
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